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1. INTRODUCTION 

Motivated by the belief that it serves as a paradigm for 
convection in&ced by an inclined applied temperature gradi- 
ent in general situations, the author [l-3] has studied the 
case of such convection in a shallow layer of a saturated 
porous medium. The horizontal component of the applied 
gradient induces a Hadley circulation which, in the central 
portion of the flow, is approximately independent of hori- 
zontal position and can be treated as a uniform flow. This 
flow becomes unstable when the vertical component of the 
applied gradient is sufficiently great. 

Linear stability analysis was first applied to this problem 
by Weber [4]. His analysis is limited to the case of small 
horizontal applied gradient. This limitation was lifted by 
Nield [l], who employed a Galerkin approximation in solv- 
ing the resulting differential equation system. The problem 
reduces to the task of finding zeroes of a certain determinant 
of order 2N, where N is the order of the Galerkin approxi- 
mation. Because of the difficulty of handling determinants 
of high order, the report of Nield [l] was based on cal- 
culations with N = 2. These indicated that the additional 
convection appears in the form of stationary longitudinal 
rolls, and that, as the horizontal Rayleigh number R, 
increases, the critical vertical Rayleigh number RV also 
increases and there is a series of transitions to higher-order 
modes, corresponding to multiple layers of rolls. It was real- 
ized that, as R, increases, the accuracy of the second-order 
approximation rapidly decreases, and the approximate 
results provide just upper bounds on the critical vertical 
Rayleigh number. 

The author has now developed a new method of deter- 
mining the zeroes of the determinants, and is able to handle 
calculations with N = 8. The more accurate results are now 
reported. It has been found that, rather than increasing 
indefinitely as R, increases, the critical value of R, reaches 
a maximum and then decreases, pass&g through zero at a 
certain value of R,. This means that the new results predict 
that Hadley flow in a porous medium becomes unstable, even 
in the absence of an applied vertical gradient, when the 
circulation is sufficiently intense. This is an interesting result, 
because Gill [5] proved that the corresponding flow in a 
vertical slab is stable to small disturbances. Gill suggested 
that this is related to the absence of an inertial term in the 
Darcy equation, in contrast to the Navier-Stokes equation. 
(The non-linear analysis of Straughan [6] predicts that the 
flow is stable provided that the initial disturbance is smaller 
than a certain threshold. Rees [7] showed that the claim by 
Georgiadis and Catton [X] that the flow was unstable for a 
finite value of the Prandtl-Darcy number, was based on 

erroneous analysis.) Until now the stability of Hadley flow 
in a shallow cavity has been an open question. In their paper, 
Daniels et al. [9] did not investigate the stability of the flow, 
but merely commented that “porous media appear less prone 
to shear instabilities” (than clear viscous fluids). 

A feature of the present problem is the way in which the 
form of the favoured disturbed flow changes dramatically as 
R,, increases. The eigenfunctions (as well as eigenvalues) 
of the differential equation system are now calculated, and 
representative streamline patterns are presented. 

BASIC EQUATIONS AND STEADY STATE 
SOLUTION 

In order to improve the presentation, scaling different from 
that of Nield [l] (who followed Weber [4]) is now introduced, 
and some of the-other notation is changed. Cartesian axes 
are chosen with the z*-axis vertically upwards and the x*- 
axis in the direction of the applied horizontal temperature 
gradient PT. The superscript asterisks denote dimensional 
variables. The porous medium occupies a layer of height H. 
The vertical temperature difference across the boundaries is 
AT. It is assumed that the Oberbeck-Boussinesq approxi- 
mation is valid, and that flow in the porous medium is gov- 
erned by Darcy’s law. Accordingly the governing equations 
are 

v*.v* = 0, (1) 

0 = -V*P*-(~/K)v*+pTg, (2) 

(pc),(dT*/&*) + (p~)~v* *V*T* = k,V**T*, (3) 

P:= POWy,(T*-TO)]. (4) 

Here (u*, v*, w*) = v*, P* and T* are the seepage (Darcy) 
velocity, pressure and temperature, respectively. The sub- 
scripts m and f refer to the porous medium and the fluid 
respectively. Also p, p and c denote viscosity, density and 
specific heat, while K is the permeability of the medium, k, 
is the thermal conductivity and yT is the thermal expansion 
coefficient. 

The boundary conditions are 

w* = 0, T* = To-(+AT)/2-&x*, atz* = *H/2. 

(5) 
We define non-dimensional quantities by x = x*/H, 

t = a&*/AH’, (u,v, w) = v = Hv*/a,, P = K(P*+p,gz*)/ 
pxm, T = R,(T* - T,)/AT, where IX,,, = k,/(pc,),, A = (PC),,,/ 
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NOMENCLATURE 

A heat capacity ratio, (pc)J(pc,)r Y dimensionless velocity vector 

A, matrix element X, y, z dimensionless Cartesian coordinates. 

; 
specific heat 
differential operator, d/de 

$ 
gravitational acceleration 

Greek symbols 

layer height 
ff dimensionless overall horizontal 

i,j,k unit vectors 
wavenumber 

k thermal conductivity %l thermal diffusivity, k,/(pc,)f 

K permeability BT horizontal temperature gradient 

I, m dimensionless wavenumbers in the X- and y- YT coefficient of volume expansion 

directions 
e dimensionless temperature perturbation 

N order of Galerkin approximation 
Ic thermal diffusivity 

P dimensionless pressure (excess over P dynamic viscosity 

hydrostatic) 
” kinematic viscosity 

Pr Prandtl number P density 

& horizontal Rayleigh number, 
CJ dimensionless frequency for disturbances. 

posYTKH2BrI~~, 
Rv vertical Rayleigh number, p,,gyTKHAT/pa, Subscripts 

t dimensionless time C critical 

T”(z) dimensionless vertical variation of the basic steady state 

temperature s, standard. 

AT temperature difference between lower and 
upper boundaries Superscripts 

U(z), V(z) dimensionless steady state velocity perturbation quantities 
components * dimensional variables. 

(PC~)~, Rv = pOgyTKHAT/pcc,. We refer to R, as the vertical 
thermal Rayleigh number. We also introduce the horizontal 
Rayleigh number R, defined by 

(6) 

The governing equations now take the form 

v.v = 0, (7) 

0 = -VP-v+Tk, (8) 

dT/at+v*VT= V2T. (9) 

The boundary conditions are now 

w = 0, T= -(fRv)/2-R,x, atz= +1/2. (10) 

Equations (7)-(10) have a steady state solution of the 
form : 

T, = F(z) - RHx, u, = U(z), u, = 0, w, = 0, 

P, = P(X,Y,Z). 

This is a solution provided that 

DU = R,, 

D2F= -UR,. 

Here D denotes the derivative operator, d/dz. It is assumed 
that there is no net flow so (U) = 0. -Here, the angular 
brackets denote an average with respect to the vertical coor- 
dinate. The steady state solution is thus the Hadley cir- 
culation : 

U = R,z, (11) 

F= -Rvz+:qR$(r--4~‘). (12) 

STABILITY ANALYSIS 
NUMERICAL CALCULATIONS 

Method 
We now perturb the steady state solution. We write The standard Galerkin method yields an eigenvalue equa- 

v = v,+v’, T = T,+ W, P = P,+p’. The linearized per- tion for R, in terms of R,, 6, k and 1. One needs to calculate 
turbation equations are R, as the smallest positive zero of the determinant of a 

v . v’ = 0, (13) 

Vp’+v’-0’k = 0, (14) 

ao'lat+ua~lax-R,u'+(~T")~'=v~B'. (15) 
We make the normal mode expansion 

[u’, n’, w’, B’,P’l = [u(z), 44, w(z), W,P(Z)l 

xexp {i(kx+ly-ut)}. (16) 

We substitute this into the perturbation equations and elim- 
inate p, u and u from the resulting equations to obtain 

(D2 -a2)w+& = 0, (17) 

(D2-ciZ+iu--ikU)~+i~-2kRHDw-(D~)w = 0, (18) 

where a = (k’+e)“* is the overall horizontal wavenumber. 
We refer to a disturbance with k = 0 as a longitudinal mode 
and one with I= 0 as a transverse mode. The last two equa- 
tions must be solved subject to appropriate boundary con- 
ditions. For the case of impermeable, isothermal boundaries, 
we have 

w=B=O atz= 2;. (19) 

The problem is now reduced to that of solving equations 
(17)-(19), where 

DT= -R,+&R:,(l-12~‘) 

Without loss of generality, we may regard R, as the eigen- 
value, with R,, CT, k and 1 as parameters. At neatral stability, 
cr has to be real and chosen so that R, is real. Subject to this 
constraint, the critical value of R, is its minimum as 4, k and 
1 are varied. 
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certain determinant. For N = 2, it is feasible to expand the 
determinant (of order 4) in terms of its elements. For N = 4, 
it is feasible to evaluate the determinant using Gaussian 
elimination. For larger values of N the expansion involves 
an excessive number of terms and an alternative practical 
method is needed. One can force the determinant to zero by 
requiring the equivalent system of homogeneous equations 
to have a non-zero solution, and one can ensure this by 
imposing a suitable additional linear constraint. When the 
determinant is not zero no exact solution of the augmented 
system exists, but one can seek the solution which gives the 
best least-squares fit, and then locate a zero by minimizing 
the least-squares error. The author has written a FORTRAN 
program which employs the NAG subroutine F04JAF for 
this purpose. The subroutine also returns the eigenvector and 
from this the functions w(z) and e(z) can be determined. 

Results 
It was shown by Nield [I] that the favoured form of the 

disturbance is in the form of non-oscillatory longitudinal 
rolls, and accordingly the results reported in this paper are 
for cr = 0 and k = 0. For various values of R,, R, was cal- 
culated and minimized as a function of the horizontal 
wavenumber CI. This gives the critical vertical Rayleigh 
number. The results presented in Table 1 are for N = 8 
(corresponding to a complex-valued determinant of order 16 
and an equi&lent real-valued determinant of order 32). This 
was the largest value of N for which zeroes of the determinant 
could be successfully discriminated. The failure for larger N 
is presumed to be due to columns of the determinant losing 
their independence. This failure is of no consequence when 
R, is small because the convergence as N increases is rapid. 
Comparisons with calculations with N = 6 indicate that the 
values of R obtained with N = 8 are in error by less than 1% 
when R, < 50, but the accuracy deteriorates considerably 
for higher values of RH. For RH = 100 the error is about 
10%. For larger values of R,, the critical Rv is a rapidly 
changing function of RH and it is easier to estimate the value 
of R, for a given value of R, rather than vice versa. For 
example, when R, = 0 the value of the critical R, with N = 8 
is 132.5 and that with N = 6 is 138.3. The deterioration in 
accuracy of the Galerkin approximation of given order as 
R, increases is presumably due to the eigenfunctions taking 
a form (with boundary layers and multiple peaks) which 
cannot be approximated closely by any low-degree poly- 
nomial. 

A feature of the present problem is the way in which the 
form of the favoured disturbance changes as R, increases. 
In Fig. 1 the eigenfunction w(z), normalized so that its 
maximum magnitude is unity, is plotted for representative 

Table 1. Critical values at the onset of instability 

R” RV c( Symmetry 

0 39.48 
10 42.01 
20 49.56 
30 62.28 
40 79.24 
50 100.9 
60 126.4 
70 154.0 
80 161.9 
90 143.5 

100 123.3 
110 101.4 
120 62.0 
132.5 0 

3.14 ~ 
3.14 
3.15 
3.16 
3.20 
3.28 
3.51 
4.22 
7.78 
7.73 
7.67 
7.61 
9.51 
9.64 

even 
even 
even 
even 
even 
even 
even 
even 
odd 
odd 
odd 
odd 
even 
even 

values of R,,. (In each case 9 varies with z in much the same 
way as w does.) For R, = 0 the profile is sinusoidal. As R, 
increases to 70 the profile flattens in the middle and tends to 
develop a boundary layer near each horizontal boundary. 
For R, = 80 the even mode is no longer the favoured one; 
it has been replaced by an odd one. [The calculations show 
that the coefficients of even terms in the Galerkin expansion 
are negligible in comparison with the odd ones at criticality. 
That the solutions have symmetry is expected because the 
differential equation system is invariant under the trans- 
formation (v, Z, k, I) + (-y, -z, ~ k, -I).] It is noteworthy 
that the slope of the curve at intermediate values of z is 
almost constant. For R,, = 132.5 the favoured mode is again 
an even one, but the profile now has two peaks and a trough. 
The corresponding streamline patterns for the perturbation 
flow are presented in Fig. 2. These have been calculated on 
the basis that, if w’ = w(z) cos oly, a streamfunction for the 
perturbation liow [which is in the b,z) plane] is given by 
tj = - cx-’ w(z) sin EY. Accordingly, the streamlines are given 
by 

w(z) sin oly = y, (21) 

where y is a constant, - 1 < y < 1, if w(z) has been nor- 
malized as above. For R, = 0 the rolls are of square cross- 
section. In the centre of the layer, where the magnitude of z 
is small, the streamlines are approximately circles (a fact 
which can easily be predicted analytically). The tendency 
towards the development of boundary layers and multiple 
vortices as R, increases is clear. In Fig. 2(c) the two vortices 
shown are contrarotating. The cross-section of each vortex 
is approximately square. In Fig. 2(d) the weak central vortex 
rotates in a sense opposite to that of the other two vortices. 
(Incidentally, for R, = 110 an even mode, for which w(z) 
has two peaks and a trough but is of constant sign, is a close 
competitor for the favoured mode. If it had been favoured 
then each roll would have contained two vortices inside a 
third, all co-rotating.) 

DISCUSSION 

It was pointed out by Nield [l] that the effect of the 
horizontal temperature gradient on the instability of the 
longitudinal modes arises from - (w$DT), which can be 
interpreted as a rate of transfer of energy into the disturbance 
by interaction of the perturbation convective motion with 
the basic temperature gradient. Thus, we have a situation 
which contrasts with the instability of shear flows in a clear 
fluid, in which a mechanism involving a transfer of momen- 
tum is involved. 

From equation (12) we have 

Or”= -R,+$R$(l-12~‘). (22) 

The effect of increasing R, is to distort the basic temperature 
profile away from the linear one. For small R, the effect of 
increasing R, is stabilizing because the negative temperature 
gradient is decreased in magnitude in the bulk of the fluid. 
For RH > 50 one finds (using the data in Table 1) that the 
temperature gradient is positive in the centre of the layer 
(where z is small). As RH increases the gradient in the centre 
becomes more and more positive, but that in regions nearer 
the walls becomes more and more negative. For large Rt, the 
“dividing” levels at which DT = 0 are given by z = + 0.29 
approximately. Thus, it is to be expected that R, will eventu- 
ally decrease as R, increases, and that the bulk of the per- 
turbation flow will be outside the vertically central portion 
of the layer. 

When B is eliminated between (17) and (IQ, one has 

(D’-a’+io-ikU)(D*-a’)~-ikR,Dw+c?(D~)w = 0, 

(23) 
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Fig. 1. Plots of the vertical velocity amplitude function w(z), normalized so that the maximum magnitude 
is unity : (a) R, = 0 ; (b) R, = 70 ; (c) RH = 80; (d) R, = 132.53. 

and when k = ~7 = 0 this reduces to Acknowledgement-The author is grateful to Prof. D. M. 

(DZ-c?)*w+aZ(D~)w = 0. 
Ryan for suggesting the method employed to determine the 

(24) zeroes of determinants. 
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Cd) (a) (b) 

Fig. 2. Streamlines for the perturbation flow : (a) R, = 0 ; (b) R, = 70 ; (c) R, = 80 ; (d) R,, = 132.53. For 
cases (a) and (b), streamlines have been drawn for y = 0.2, 0.4, 0.6 and 0.8, where y is as in equation (5). 
For case (c) the streamlines are drawn for y = + 0.2, k 0.4, k 0.6, + 0.8. For case (d), the middle streamline 
corresponds to y = -0.5, and the others (two branches for each value) correspond to y = 0.2,0.4,0.6,0.8. 
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INTRODUCTION 

Heat transfer is enhanced through jet impingement for many 
different applications, including the tempering and shaping 
of glass, the annealing of metal and plastic sheets, the cooling 
of gas turbine blades, and the drying of textiles, veneer, 
paper, and film materials. However, a disadvantage of 
impingement heating or cooling can be the nonuniformity 
of the heat flux distribution. For large arrays the majority of 
jets will be centerjets, i.e. surrounded on all sides by adjacent 
jets. However, for small arrays, a significant fraction of the 
impingement surface is covered by perimeter or boundary 
jets which are not completely surrounded by adjacent jets. 
For improved understanding of the flow and heat transfer in 
small arrays, the similarities and differences between the 
center jet and perimeter jets in a 3 by 3 square array 
(X,/D = 6.0) were studied. Only limited local heat transfer 
coefficient data have been reported in the literature [l], and 
no known study examined the differences between a center 
and perimeter jet in a small array. Hence, local Nusselt 
numbers were obtained for Re, = 10200 and 17000 at 
H/D = 6.0, 1 .O, and 0.25 with open spenf air exits similar to 
the conditions used by Huber and Viskanta [2]. Symmetry 
was assumed and the convective coefficients were measured 
only over the lower quadrant shown in Fig. 1. This was done 
to keep the data files manageable in size. 

The heat transfer coefficients were measured using a heated 
0.025 mm thick stainless steel foil impingement surface 
coated with liquid crystals. The temperature distribution 
along the surface was determined by measuring the reflected 
wavelength of light from the liquid crystals with the use of 

tAuthor to whom correspondence should be addressed. 

bandpass filters and an electronic digitizer. With this tech- 
nique local Nusselt number distributions are obtained that 
show the uniformity of coverage along the impingement 
surface. The experimental method and conditions are dis- 
cussed in detail by Huber and Viskanta [2] and Huber [ 11. 

RESULTS AND DISCUSSION 

Local Nusselt numbers 
The local Nusselt numbers are presented by contour and 

three-dimensional plots for the measurement area shown 
in Fig. 1. While experimental data were obtained for two 
Reynolds numbers, 10 200 and 17 000, the largest differences 

Square-edged orifices 
(D = 6.35 mm) 

Spent air exits 
(D = 7.94 mm) 

Measurement 
area YV 

Fig. 1. Measurement area for perimeter jet experiments. 


